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The relations between the kinetic equations with and without convolution 
in time are discussed on the basis of the kinetic equation for the Van Hove 
self-correlation function. Formal equivalence of both the equations is shown, 
and approximate scattering operators for the dilute-gas case and for the 
Brownian particle are considered. 
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1. I N T R O D U C T I O N  

During the last ten years, a great deal of  progress has been made in the field 
of  irreversible statistical mechanics. In particular, the general theory of the 
kinetic equations has been developed. Two main approaches to the derivation 
of the kinetic equations have been formulated. The first, due to Cohen, 
Ernst, Haines, and Dorfman,  (1-~) is based on the resummation of  the cluster 
expansion of the reduced distribution functions and leads to a scattering 
operator which is a function of  the same time as the time argument of  the 
distribution function. Usullay, the authors use only an asymptotic, long-time 
form of the scattering operator, in agreement with the earlier ideas of  
Bogoliubov, but the extension to the full time scale is straightforward and 
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can be obtained readily. ~2,3~ The second approach, developed by Prigogine's 
group, ~5-7~ gives the kinetic equations with convolution in time. This non- 
Markovian form, being related to the finite duration of collision processes, 
is frequently called "the memory" effect. For the derivation of this 
convolution equation, the Zwanzig ~8~ projection operator technique has been 
frequently applied. 

Some time ago, Fulifiski C9) suggested that the Markovian kinetic 
equations with the time-dependent scattering operator could be derived from 
the formal solution of the Liouville equation by the projection operator 
technique or from the familiar Zwanzig 18~ equation by the use of the Taylor 
expansion method in principle analogous to the method in the Prigogine 
monograph. ~6~ Later, Fulifiski and Kramarczyk ~1~ and Kramarczyk and 
Voss m~ proposed a short and unconventional method of the derivation of 
the Markovian kinetic equations directly from the Liouville equation by the 
application of a projection operator technique which is different from the 
Zwanzig method. 

In the present paper, we discuss the relations between the kinetic 
equations with and without convolution in time. As the basis for comparison, 
we chose the kinetic equation for the Van Hove self-correlation function. 
The Van Hove correlation function has been studied by several authors (~z-15~ 
using different methods, but all of the equations which have been obtained 
belong to the convolution formalism. In the next section, we present a more 
conventional derivation of the Markovian kinetic equation of Kramarczyk 
and Voss which exhibits the difference with the familiar Zwanzig technique. 
We also show the new method of derivation of the Markovian equation by 
the direct resummation of the Zwanzig formulas. In the same section, we 
derive the general form of the Markovian scattering operator and prove that 
for a certain projection operator, the Kramarczyk-Voss technique is 
equivalent to the resummed cluster expansion method of Ernst 
et  al. ~3~ In Section 3, the low activity limit of the scattering operator is 
discussed, and in Section 4, the appropriate scattering operator for the 
Brownian motion problem is considered. The two problems allow us to 
show more directly the relations between the kinetic equations in both 
formalisms. 

2. GENERAL K INETIC  E Q U A T I O N  

We restrict ourselves to a system with binary interactions only. The 
Liouville operator of such a system is given by 

KN -~ KN ~ 4- ~ K  N (1) 
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where 
N 

KN ~ = ~ Vi " ~/~ri 
i=1 

N 
= 

i<J 

~9i~- = eU(I ri -- rj I)/erj �9 [(e/ev 0 -- (~/evj)] 

and r~ and v~ denote, respectively, the position and velocity of the ith particle. 
Let us now define the Van Hove self-correlation function G(R, t) and 

the intermediate scattering function I(k, t). Using the grand canonical 
ensemble, we obtain 

N 

G(R, t) ---- ($2/IV3) ~, (a,N/N!) f dr f dr N dv u Z ~(R -k r -- r0 
N~I i=I 

N 

• ~[ri(--t) -- r] ~ q~(vi) e -~vN (21 
i=1 

and 

I(k, t) = (1//V3) ~ [o~g/(N -- 1)!] f dr N dvN(exp -- ik  "r0 

N 

• ~[ q~(vi)(exp - -~UN) exp ik" rl(--t);  fi = 1/k~T (3) 
i--1 

where g2 is the volume of the system; N is the mean number of  molecules in 
the volume; ~ is the activity; Z is the grand canonical partition function; 
~(v) is the normalized Maxwellian velocity distribution function; and Uu 
is the total potential energy of the N-particle system. We also define the 
initial N-particle distribution function F(k, r u, v N) given by 

N 

F(k, r ~v, v u) = (exp ik" r0 I ]  q~(vi) exp (--[3UN) (4) 
i = l  

and the auxiliary one-particle distribution function f ( k ,  v~, t) by 

f ( k ,  v l ,  t) = Z (1/N3)[~ N -  1 ) ! ]  
N ~ I  

• f dv%y f d r N ( e x p - - i k . r a ) F ( k , r  N, vN, t) (5) 

The function F(k, r u, v N, t) is the solution of  the Liouville equation for the 
initial distribution given by Eq. (4), i.e., 

F(k, r N, v N, t) = e-tXNF(k, r N, v ~) (6) 
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If  we now use the projection operator P = > < ,  where 

N 

> = (exp ik"  rl)(exp --flUs) l-I ~~ 
i = 2  

and 

(7) 

is 

--a~f(k, v~, t) = ik"  vlf(k,  vl, t) + M(t)f(k, Vl, t) (12) 

where the scattering operator M(k, Vl, t) and the distribution function have 
the same time argument. 

An explicit form of the Markovian scattering operator can be obtained 
directly from the expression given by Kramarczyk and Voss; (m however, it 
seems instructive to discuss the derivation of the Markovian kinetic equations 
in detail. In the original paper, Kramarczyk and Voss used a very compact 
method of deriving the Markovian equation. We present here another 
derivation of this equation which explains its difference with the more 
familiar Zwanzig method. 

We start from the Liouville equation in the differential and integral 
forms 

--a~Fu(t) = KN(P + Q) Fu(t) (13) 

t *  

Fu(t) = FN(O)- | dt' KNFN(t') (14) 
d 0 

Here, Fu(t) is an N-particle distribution function. Using the abbreviation 
Q = 1 - P, we decompose the first equation by splitting Fu(t) function into 
two parts, 

Fu(t) = Pru(t) + QFw(t) 

% = ~" (1/NZ)[~N/(N-- 1)[1 f dv~-~ 1 f dr N exp(--ik "h) (8) 

which is the generalized version of the projection operator of Steeki and 
Wojnar, ~13) we have 

f (k ,  Vl, t) = ( f (k ,  r ~, v N, t) 
(9) 

f (k ,  vl ,  0) = ~(vl) 

and 
(1 - -  P ) F ( k ,  r N, v ~v) = 0 (10)  

In addition, the intermediate scattering function I(k, t) can be expressed as 

I(k, t) = f dvlf(k,  vl ,  t) (11) 

The general form of the "Markovian" kinetic equation for our problem 
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All that we need do in order to obtain the closed kinetic equation for PFN(t) 
is to express the function QFu(t) as a functional of  PFN(t). This can be done 
by means of  the equation 

o t 

QFN(t) =- QFN(O)- | dr' QKNFN(t') (15) 
, )  

0 

which follows directly from (14). The difference between the Zwanzig and 
Kramarczyk-Voss methods lies in dealing with the integrand. Zwanzig 
rewrites Eq. (15) in the form 

QFN(t) = QFN(O) - | dt' QKN[PFN(t') @ QFu(t')] 
d o 

and by iteration obtains 
t 

QFN(t) = [exp(-tQKu)] QFN(O) - f dt' [exp(-t'QKu)] QKNPFN(t t') (16) 
, J  

o 

Inserting this expression in Eq. (13), one obtains the convolution kinetic 
equation of Zwanzig: 

t 

--e~PFu(t) = PKNPFN(t) -- ( dt' PKN[exp(--t'QKN)] QKNPFu(t -- t') 
d 0 

+ PKu[exp(-- tQK~r QFN(O) (17) 

In order to obtain the Markovian kinetic equation, we should use the relation 

t 

QFN(t) = QFN(O) -- f dt' QKuexp[--(t '  -- t) KN][PFN(t) + QFN(t)] (18) 
o 

which also follows from (15). The time integration can be formally performed 
to obtain 

QFN(t) -- QFN(O) @ Q(1 - e~Xu) PFN(t) + Q(1 - e*KN) QFN(t) 

and by iteration we have 

QFu(t) = [1 -- Q(1 - etXu)] -1 Q(I - e*xN) PFN(t) 

+ [1 -- Q(1 - e'KN)] -1 QFN(O) (19) 

After simple rearrangement, the Kramarczyk-Voss kinetic equation m) 
follows: 

--~tPFu(t) = PKNe-~KN[1 @ P(c -~KN -- 1)] -1 PFu(t) 

@ PKNe-tKN[1 @ P(e -tKN -- 1)] -1 QFN(O) (20) 

By (1 -- x) -1, we mean 5Z,~0 x n. In addition, if we have 

PKN~ = O, PQ = QP = o 
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Eq. (20) can be transformed to the form 

--~tPFN(t) = PKN ~ PFN(t) + P~KNe-*Ku[1 + P(e -tKN -- 1)] -1 PFN(t) 

+ PKN e-tXN[1 + P(e -tKN -- 1)] -1 QFN(O) (21) 

and we take the Markovian scattering operator to be equal to 

M(t, k, vz) = P3KNe--*KN[1 + P(e--tKN -- 1)] -1 (22) 

Equations (20) and (21) represent the exact Markovian form of the 
generalized master equation valid for all times. Another form of the 
Markovian kinetic equation can be easily obtained by the resummation of the 
convolution kinetic equation of Zwanzig [given by the Eq. (17)]. We put in 
Eq. (16) 

[ P F N ( t  - -  t ' )  = P exp(t'Ku)(P + Q)FN(t) 

and perform the resummation to obtain 

QFN(t) = ~P(t) e -*~ QFN(O) + 5e(t)Z(t) Pru( t )  

where 5r is the iteration solution of the equation 

c~P(t) = 1 -}- Z(t)  5s 

and Z(t) is given by 
t~ t 

z ( t )  = - I d r  exp(--t '  OKg) PKNP exp(t'K~v) 
d 0 

Using above expressions, we obtain the Markovian kinetic equation in 
the form 

--~,PFu(t) = PKNPFN(t) + PKN~W(t) Z(t)  PFN(t) + PKNCoC~(t) QFN(O) (23) 

which is especially convenient when the long-time limit (t ~ oo) is taken. 
For our particular problem, all the terms containing the QFN(O) function 

vanish and we obtain the kinetic equation for the f (k ,  vl ,  t) function in the 
form 

- - a J ( k ,  vl ,  t) -- ik"  vlf(k,  vl ,  t) ---- M(k, v I , t ) f ( k ,  v l ,  t) (24) 

where M(k, vl ,  t) can be expressed as 

M(k, vl ,  t) ~ (3K~r exp(--tK~r -- (1 -- exp(--tKN))] -1 

o r  

t 

M(k, v l ,  t) = (3KN exp(-- tKN))[1 -- ~ dt' (exp(t 'Ku)) 
0 

X (3KN exp(-- t'KN))]-Z(exp(tKN~ (25) 
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It can be easily shown that the last form of this operator is identical to 
that obtained by the application of the resummed t-method of  Ernst et al. (~) 
Indeed, using this method, we have for the auxiliary functionf(k,  v~, t) and 
for its time derivative the following expressions: 

f (k ,  v l ,  t) = <exp --tKN~ -- ( dt'(exp t'KN ~ 
. /  0 

• <~KN exp --t 'KN)] q)(v~) 

~,f(k, v l ,  t) = - - (Ku~  vz, t) -- <3KN exp --tKu> ~v(vl) 

Then, we invert the last expression to obtain 

q~(v 0 = [1 -- f dt '(exp t 'Ku~ exp -- t 'K~)] -1 (exp tKu~ f (k, V l ,  t) 
4/ 

0 

and insert it in the place of q~(v0 in Eq. (22). In this way, we obtain exactly 
the same form of the scattering operator as the second one given by (25). It 
It should be noted that the analogous relations exist within the convolution 
formalism between the resummed e-method, (2,3) the method of inverse 
operators of Blum and Leb0witz, (14) and the Zwanzig projection operator 
technique (8) [so far as QFN(O) -~ 0]. 

We can also find an exact relation between the scattering operator 
M(k, vx, t) and the appropriate scattering operator in the convolution 
formalism, which is given by (12) 

G(t) = (KN exp( - t 'QKN)  QK~> 

From the relation 

M(t, k, vO<exp - - tKg)  = @Ktv exp -- tKN) 

we obtain, by the application of the Laplace transform, the following relation 
between the operators: 

s +  iQo 

(2~ri) -1 f dq _~r(k, vz, z --  q)[q + ik" v + ~(k, vz, q)]-I 
s - -  i az 

= ~(k, v~, z)[z + ik"  v~ + G(k, v~, z)] -~ (26) 

where G(k, vz, z) is the Laplace transform of the scattering 
G(t, k, Vz), which is given by 

C(k, vl ,  z) = <K~Ru(z)> Y, [<~K~ R~(z)>]" [<~N~ -1 
f t = 0  

operator 
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and RN(Z) and R~~ are given by 

RN(z) = 1/(z + KN), Ru~ = 1/(z + KN ~ 

respectively. The complicated relation between M and G simplifies greatly if 
any particular expansion of the scattering operator is applied. We return to 
this problem in the next two sections. 

3. S C A T T E R I N G  O P E R A T O R  F O R  D I L U T E  G A S E S  

The scattering operator that depends on the dynamics of only two 
particles is of central interest in the whole theory of nonequilibrium pheno- 
mena. It is for this case that the equations of motion can be solved, so that 
the scattering equation can be found explicitly. For our problem, the two- 
body scattering operator can be easily obtained by the application of the 
activity expansion of the operator given by Eq. (25). For the lowest-order 
term of the expansion, we have 

11//{1)( k, u t) ~ (0~/~'~) f dv 2 f dr 1 dv2[exp(--ik �9 rl)]~K2 exp(--tK2) 

• [exp ik -  (r 1 + vlt)][exp -flU([ rx - r2 I)] ~(v~) (27) 

or, equivalently, 

M(1)(k, Vl, t ) •  --(a/f2) f dr2 f drl dr2 So dt'SK2[exp --t'(K~ + ik $ Vx~ ] 

• K~(exp ik" vlt') q0(v2) exp[--flU(I rl -- r2 [)] (28) 

It should be noted that the application of the grand canonical ensemble 
in the definition of the projection operator greatly simplifies the problem of 
the determination of the particular terms of the activity (or density) expansion 
of the scattering operator. 

The kinetic equation for the dilute-gas, binary collision case is given by 

--~tf(k,  vl ,  t) -- ik" v~f(k, vl ,  t) 

= (c@Q) f dr2 f drl dr~ ~g  2 [exp --t(K 2 q- ik" Vl)](ex p ik" vlt) 

[exp --fiU(] rl -- r21)] ~0(v~) f (k ,  v2, t) (29) 

or in position space by 

- - ~ f ( R ,  vl ,  t) -- vl" XTRf(R, vl ,  t) 

f dv 2 f dr 1 dr 2 f dr a(R --  r 1 - -  r) ~K 2 (exp --tK2) ~(v~) (~I~) 

• [exp --/3U(I r 1 -- r2 I)](exp tK~.~ + r, vl, t) (30) 
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For the short-time limit, we obtain immediately 

lim M(1)(k, vl ,  t) ---- 0 (31) 
t~O 

If  we restrict our considerations to times of order of the mean free time of  the 
particle motion, we obtain the so-called linear trajectory approximation 

ML(~(k, Vl, t) = --(a/O) F .  e/ev~ (32) 

with the mean force F given by 

F(v~, t) = - - f  dv2 f dr1 dr~ 9(%)[exp --flU(] rz -- r 2 + (vz -- v2)t ])l 

• (~/~r~) U(I r l  - -  r2 l) 

The long-time limit of the scattering operator can be obtained by the appli- 
cation of  the limit theorem for the Laplace transform. We use the relation 

lira Ma)(k, v2, t) = lira Mll)(k, vz, s) 
t ~  s~0 

oo 
= | dt ~M(Z)(k, vl ,  t) -- M(1)(k, vz, t = 0) 

0 

and obtain the asymptotic form of the scattering operator by 

lira M(1)(k, vl ,  t) 
t~ o~ 

-----(Og./~"~)f dv 2 f d r l  dr 2 j'- dl" ,K 2 [ e x p - - , ' ( K  2 -~ i k  "Vl) ] 

• K2q~(v,)[exp -fiU(l r~ - rz I)] exp ik" vlt' (33) 

It is interesting to compare the above results with the analogous 
equations of the convolution formalism. In the same low-activity limit, we 
obtain the convolution equation 

~,f(k, vl ,  t ) ~ - i k "  vlf(k, v , ,  t ) =  (al~2) f dr, f drl dr, f l  
r 

dt'SK~ 

• (exp -tKz) Kz(exp ik" r0  q~(v~)[exp -flU(i rl - r2 ])]f(k, vl ,  t) 
(34) 

This equation was derived by Stecki and Wojnar (~3) by the application of the 
Zwanzig projection operator technique. In the original equation, t~3) the o~ 
factor is replaced by the density. The convolution scattering operator vanishes 
in the short-time limit. The long-time asymptotic form of the equation is 
given, following Balescu, (7) by 

~J (k ,  v1, t)  ~- ik" vl f (k ,  vz, t) = (~/~) f dr~ dr~ dr2 f dt' 
0 

• (exp - - ik"  1"1) ~K2 (exp --tK2) K~(exp i k .  r0 ~(v2) 

• [exp --3U(I r~ -- r2 [)]f(k, vl ,  t -- t') (35) 
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It is interesting to discuss how the non-Markovian kinetic equation can 
be reduced to the Markovian one. The general procedure presented in the 
Balescu paper (7~ gives the long-time version at once, and here we use the 
method used in the Prigogine book, ~n) which consists in the application of 
the Taylor expansion of the funct ionf(k,  Vl, t -- t'). We have 

f (k ,  v~, t -- r) = (exp ik"  vl~-)f(t, k, v0 

(exp ik �9 vl~') f dt' G(k, vl ,  t ' ) f (k ,  vl ,  t) @ .-. 
. t  

0 

(36) 

It should be stressed that every appearance of the scattering operator 
or its time derivatives in the right-hand side of the expansion (36) introduces 
one more ~ factor. If  we strictly treat this parameter as the small one, we 
should retain in the resummed expression only the first term of the expansion 
(36), which is independent on ~. Doing so, we obtain as the Markovian, low- 
activity limit of the convolution scattering operator the expression identical 
with that previously derived for Mm(k, Vl, t) operator. Certainly we obtain 
the same result using the general relation (26). It follows from the above 
considerations that the right-hand side of the Markovian kinetic equation (29) 
is [apart from the ~ dependence of the funct ionf(k,  Vx, t)] linear with respect 
to the activity, whereas for the convolution kinetic equation (34) we also 
have an implicit ~ dependence due to (36). 

4. T H E  B R O W N I A N  M O T I O N  PROBLEM 

Another problem which seems instructive to discuss is the equation for 
the distribution function of a heavy particle moving in a fluid of light particles. 
It is an essentially Brownian motion problem, which has been studied recently 
by several authors.(16-18~ Nevertheless, they applied the convolution formalism 
(see especially the paper of Lebowitz and Rubin, ~IG) where the derivation of 
the nonstationary Fokker-Planck equation is given) so that the classical 
Fokker-Planck equation can be obtained only when a certain limit involving 
the size of the fluid and the time scale were taken. We shall show that using 
the Markovian scattering operator (22), we can obtain the classical form of 
the Fokker-Planck equation with the time-dependent diffusion coefficient as 
the first (different from zero) term of the expansion of the scattering operator 
in powers of the 9' parameter equal to (m/M) 1/2. We have only to modify our 
definition of the projection operator in order to include the fact that the heavy 
particle is different from the fluid particles and cannot leave the system. 

In the previous section, we assumed that the particles are of the same 
mass so that there was no necessity to distinguish between the velocities and 
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moments of the particles. Here, we have the heavy particle with mass M and 
light particles of  mass m. The Hamiltonian of the system is then 

where 

N 

H(P, R, p-~r r N) ---- (P2/2M) + UB + U: + ~] (pfl/2m) 

N 

U ~ =  ~ U ( t R - - r I L ) ;  U : =  ~ U ( t r i - r j l )  
i = 1  r  

We choose the initial distribution function as 

FN(k, P, R, pN, r N) _~ (1/S)(O~N/N!) 
N 

• 1~ ~v(p~)(exp -/3[UB q- U:]) ~o(P) exp ik"  R 
i = 1  

The distribution function of  the heavy particle is given by 

(37) 

where 

fox ,  e ,  t) = i dR f drNdpN(exp--ik'R) 
N ~ O  " 

• (exp --tKN)FN(k, R, P, pN, r ~) 

e = 2 f dR f drN exp-- EU, + U,1 
N~>0 

(38) 

We apply the projection operator defined analogically to (7) and (8), 

N 

P -- > < = ]-[ q~(p0(exp --fl[UB -k U:])(exp ik -  R) 
g = l  

E (l/3)(o~N/N!) f dR f dr N dp N exp - - i k .  R 
N ~ 0  

and we denote here 

(39) 

N 

> = ~ ~(pi)(exp --fl[Un + U:]) exp ik"  R (40) 
g = l  

Following the paper of R6sibois and Davis, (lr) we express the Liouville 
operator in the form 

KN ~- K~ 4- ~K:N + ~K ~ = K~ + 7KB ~ + 3KN 
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where 
N 

K? ----- Z p <  O/er,; K. = (P/M) �9 e/eR 

7~KN e =  _ O U ( I R - - r ~ I )  a =F({R- - r~})  

~<j Or~ Op~ ~P~ e-1 ~ri 
0 

(41) 

The Markovian scattering operator can be obtained from the operator 
equation 

M(t, k, P) ~ (~KN exp -- tKN) exp[ik �9 (P/M)t] 

+ M(k, P, t) f~o dt' exp[- - ik '  (P/M)(t - - t  ')1 

• (~KN exp - - t 'Ku)  exp [ ik '  (P/M)t] (42) 

If we expand the operator (3Ku e-*~r~ ") in powers of ~, = (re~M) 1/2, we can 
show that the first-order term vanishes and the second-order term of the 
expansion gives the classical Fokker--Planck operator with the time-dependent 
diffusion tensor.~19~ We obtain 

f' M~(t ,  k, P) ~ -- ),~@Klv B dt'(exp - t ' K S ) ( K B  ~ + r3KNB)) 
0 

~- -- D(t)(~/~P) . [(P/M) + fl-l(~/~p)] (43) 

where the diffusion tensor is given by 

N>~0  

N 

• (c~N/N!~) I-[ ~(P,) exp --/3[U~ + (7i] 
i = 1  

• F({R -- r,})" F({R -- rd--t ')} ) (44) 

and by F({R -- ri(--t'}) we denote 
N 

F({R -- rd--t)}) -~ --[exp -- t (K~ -+- 3K/ ) ]  ~ ~U(] R -- r, ])/~r, 
i = I  

If  we take the long-time limit, i.e., if we put 

lira D(t) = D ( ~ )  
t-o cz~ 

we obtain the scattering operator of R6sibois and Davis. (~" 
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The appropriate kinetic equation in the convolution formalism has been 
derived recently by Stecki and Narbutowicz, (2~ who obtain 

O~f(k, P, t) -k ik" (P/M)f(k, P, t) 

f dt' ~(t')(~/6P) [(P/M) + fi-l(e/6P)]f(k, P, t t') (45) 
o 

where 

and 

~ ( t )  = � 8 9  - -  r i } )  �9 F ( { R  - -  r i ( - - t ) ) ) )  

t 

f dt' ~7(t') = D(t) 
0 

The trivial difference with respect to Ref. 20 follows from the application 
of the grand canonical ensemble in the present paper. Equation (45) can be 
transformed to the Markovian form by the method analogous to that used 
in Section 3. The resummed scattering operator contains terms proportional 
to all powers of the 7 parameter. The first term of the expansion, which is 
proportional to 72, is identical with the M(~(k, P, t) operator. 

5. S U M M A R Y  OF RESULTS 

The aim of the present paper has been to discuss and to clarify the 
relations between the two formalisms of the kinetic theory. We have shown 
how the familiar method of the Zwanzig derivation of the kinetic equation 
may be modified so as to obtain the kinetic equation without convolution. We 
have also presented a new method of the derivation of such an equation by the 
resummation of the Zwanzig formulas. We have discussed the relations 
between the formalism of Fulifiski, Kramarczyk, and Voss and the earlier 
results of the Cohen et al. It has also been shown that for projection operators 
such that ( 1 -  P)FN(O)= 0, the Kramarczyk-Voss equation and the 
resummed t-method of Ernst and Cohen give identical results. In general, 
the Kramarczyk-Voss formalism of projection operators is in the same 
relation to the Cohen-Ernst method as the Zwanzig projection operator 
technique is to the method of inverse operators (or, as is called by Ernst 
et al., (3) to the resummed e-method). From the discussion given in Section 2, 
it follows that the kinetic equations with and without convolution in time are 
fully equivalent and equally general. 

The usual interpretation of the scattering operator G(t) assumes that it 
is short-ranged in time, i.e., G(t) approaches zero rapidly as t grows on the 
molecular (collision-time) scale. It also represents a "single event" whose 
unending repetition producesf(t) from f(0). The asymptotic (e.g., Boltzmann) 



96 A,  R. Altenberger and J, Stecki 

scattering operator is obtained as ~(z = 0) or jo dt G(t). On the other hand, 
M(t )  depends on the macroscopic time t and for this reason, it may be 
thought, contains fast, high-frequency events mixed together with slow, low- 
frequency processes. There is no indication of separation of time scales. 
However, repeated action of M(t)  on f (0)  also producesf( t ) .  The asymptotes 
at long times are obtained by the limit t - +  oo in M(t) .  The results were 
correct in the cases we examined. 

We have also discussed the case of dilute gases and the case of the motion 
of a heavy particle in a fluid of  light particles. On the basis of  these two 
examples, we have displayed rather explicitly that, although the general forms 
forms of the Markovian and convolution equations are equivalent, this is 
no longer so when a certain approximation scheme is applied to the scattering 
operator. The convolution of the kinetic equation in the lowest-order 
approximation exhibits a more complicated dependence with respect to the 
expansion parameter  than the Markovian kinetic equation in the same order 
of  approximation. The last equation can be obtained from the former one if 
the "Markovianizat ion" procedure is applied (for example, by the use of  the 
Taylor expansion method) and only the lowest-order term with respect to the 
expansion parameter  is retained. 

The Markovian form of the kinetic equation is without doubt more 
closely related to the old'kinetic equations, as for example, the Boltzmann 
or Fokker-Planck equation, and gives them in the lowest order of  the appro- 
priate approximation scheme, but, in general, it is not yet known which 
formalism will be more useful in the theory of transport processes. 
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